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Abstract—Given two discrete random variables X and
Y , an operational approach is undertaken to quantify the
“leakage” of information from X to Y . The resulting
measure L(X→Y ) is called maximal leakage, and is defined
as the multiplicative increase, upon observing Y , of the
probability of correctly guessing a randomized function of
X , maximized over all such randomized functions. It is
shown to be equal to the Sibson mutual information of
order infinity, giving the latter operational significance. Its
resulting properties are consistent with an axiomatic view
of a leakage measure; for example, it satisfies the data
processing inequality, it is asymmetric, and it is additive
over independent pairs of random variables. Moreover, it
is shown that the definition is robust in several respects:
allowing for several guesses or requiring the guess to be
only within a certain distance of the true function value
does not change the resulting measure.

Index Terms—Leakage, Privacy, Sibson mutual informa-
tion, Inference

I. INTRODUCTION

Given two discrete random variables X and Y , how
much information does Y leak about X? This basic
question arises in many secrecy and privacy problems,
in which X represents sensitive information and Y
represents information available to an adversary. A quan-
titative answer to that question is necessary to assess
the performance of privacy systems for which Y cannot
be made independent of X , which is often the case
in practice. For example, a curator might want to re-
veal statistical data about a given population without
compromising the privacy of its individuals [1]–[3]. An
adversary could also gain access to Y through a side
channel [4]–[7], or through a wiretap [8,9]. Perfectly
securing these channels, if even possible, could be highly
detrimental to the performance of the underlying system.

Moreover, the question is interesting from a purely
theoretical point of view, as it is akin to fundamental
questions in information theory such as “how much
information does X contain?” The fact that Shannon
answered the latter question with the entropy of X ,
H(X), might explain why many works [8]–[15] have
adopted equivocation, H(X|Y ), as a measure of privacy.

However, this choice overlooks the context in which
these questions were posed. Whereas Shannon’s moti-
vating problem was finding the minimum number of bits
required to describe X , the goal in privacy problems
is different. It also fails to capture the fact that the
adversary might be interested in functions of X , or other
random variables dependent on X [16,17], rather than X
itself.

In this paper, we give an operational definition of
leakage that is motivated by the setup of a guessing
adversary. More specifically, upon observing Y , the
adversary tries to guess a (possibly randomized) function
of X . Leakage for a specific function is considered to
be the logarithm of the ratio of the probability of a
correct guess when Y is observed, to the probability of a
correct guess when it is not (i.e., a blind guess). Maximal
leakage, which we denote by L(X→Y ), is then defined
as the maximum leakage over all such randomized
functions. This maximization, which is formally over
discrete random variables U for which the Markov chain
U − X − Y holds, represents a worst-case analysis on
the function of interest U , and models scenarios in which
the conditional distribution PU |X is unknown. It is also
inspired by the strong data processing constant [18].

Although the maximization is an infinite-dimensional
problem, L(X→Y ) admits a closed-form solution. It
turns out to equal the Sibson mutual information of
order infinity I∞(X;Y ) [19,20], endowing it with an
operational significance. Several desirable properties for
a leakage measure then follow: it is zero if and only if X
and Y are independent, it is not symmetric, it satisfies
the data processing inequality, and it is additive over
independent pairs {(Xi, Yi)}.

We provide a conditional probability law PU |X that
achieves the maximum and depends on the joint prob-
ability PXY only through its X−marginal, PX . In par-
ticular, PU |X is such that: for distinct x’s, the supports
of PU |X=x’s are disjoint, and each PU |X=x effectively
“shatters” the atom x into (almost) uniformly distributed
u’s to get an (almost) uniform marginal PU . Moreover,



we show that, in general, there is no deterministic law
PU |X that achieves the maximum. Indeed, we could
have X and Y such that L(X → Y ) > 0, whereas
observing Y does not affect the probability of guessing
any deterministic function of X .

Furthermore, we show that the definition of maximal
leakage is robust in several respects. In the definition of
L(X→Y ), we allow the adversary one guess only. A
natural extension would be to allow for, say, k guesses
for some integer k. This is particularly relevant for
privacy problems. For example, if U is a password to
some system, then an adversary is typically allowed
several wrong guesses before he/she is possibly locked
out. We call the modified measure k-maximal leakage,
and denote it by L(k)(X→Y ). We show that, in fact, the
two definitions are equivalent for all k.

Finally, we consider the case in which the adversary
only needs the guess to be within a certain distance of
the true function value, according to an arbitrary distance
metric. As such, the random variable U , over which
we are optimizing, now lives in a given metric space
U and is no longer restricted to be discrete. We call this
modified measure maximal locational leakage, and we
denote it by LU (X→Y ). We show that LU (X→Y ) ≤
L(X→Y ), and equality holds under an unboundedness
condition on the metric space U .

II. RELATED LEAKAGE METRICS

The literature on leakage and privacy measures is
vast, spanning the fields of information theory, computer
science, and computer security. The closest to our work
comes from computer security in [21]–[24]. In particular,
[21] defines leakage from X to Y as the logarithm of the
multiplicative increase, upon observing Y , of the proba-
bility of guessing X itself correctly, neglecting that the
adversary might be interested in certain functions of X .
[22] considers a worst case approach, and maximizes the
previous quantity over all distributions on the alphabet
of X (while PY |X is fixed). The resulting quantity turns
out to equal L(X→Y ) and is called in the computer
security literature “maximal leakage” as well, or min-
capacity (the term min-capacity is slightly misleading as
L(X→Y ) is in fact greater than or equal to the Shannon
capacity of the channel defined by PY |X [23]. However,
the term “min” was used because the min-entropy ap-
pears when computing probabilities of correct guesses).
It is denoted by ML(PY |X), and its properties were fur-
ther studied in [23,24]. [25,26] investigate relationships
between maximal leakage and differential privacy [27],
which is the most widely adopted metric in database
security. Roughly speaking, differential privacy requires

that, for any two neighboring databases, the probabilities
of any given output do not differ significantly.

Another connected line of work stems from cryptog-
raphy, and in particular from the notion of semantic
security [28] which considers the security of encryption
schemes. First, [28] introduces the notion of “advantage”
for a given function of the messages. It is the additive
increase, upon observing the encrypted message (i.e., the
ciphertext), of the probability of correctly guessing the
value of the function. In our framework, “advantage”
is defined as the multiplicative increase. Since one is
typically interested in securing hard-to-guess functions
for which the probability of a correct guess is small
(since, otherwise, we are already “doomed”), the mul-
tiplicative increase is arguably more descriptive of the
change. It also makes more intuitive sense when viewing
leakage in terms of leaked bits. Semantic security then
requires that, for an adversary that can work only for a
polynomial (in the length of the message) amount of
time, the advantage is negligible for all deterministic
functions that are computable in polynomial time, and
for all input distributions.

There are several variants of semantic security. In
particular, entropic security [29,30] drops the compu-
tational bounds (on the adversary and the considered
functions), but restricts its attention to input distribu-
tions with high min-entropy. [31] introduces semantic
security to the wiretap channel, and does not restrict
it to computationally bounded adversaries, nor deter-
ministic polynomial-time computable functions. For a
given encryption scheme, [31] then upper and lower-
bounds the advantage of semantic security in terms of
– what the authors call – mutual information security
advantage, which is defined as the maximum, over all
input distributions, of the mutual information between
the message and the output of the channel whose input
is the encryption of the message. Moreover, for discrete
random variables X and Y , [32] upper-bounds the
advantage over all deterministic functions in terms of
their maximal correlation, which inspired [33] to use the
latter quantity as a secrecy metric. [32], inspired by the
correspondence analysis literature [34], also generalized
maximal correlation to k-correlation, which is defined as
the sum of the k largest principal inertial components of
the joint distribution PXY .

Finally, rate-distortion-based approaches to privacy
metrics can be found in [35]–[39]. Although the par-
ticular metrics differ among those works (e.g., expected
distortion, probability of a guess satisfying the distortion
constraint, etc.), they all assume that there is a known
distortion function up to which the adversary is interested
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in the sensitive information X . For further discussion
of privacy metrics, we refer the reader to [40], which
categorizes over eighty such metrics.

III. MAXIMAL LEAKAGE

Let X and Y be two discrete random variables, with
alphabets X and Y respectively. We denote by PXY the
joint distribution of (X,Y ).

Definition 1 (Maximal Leakage): Given a joint distri-
bution PXY on finite alphabets X and Y , the maximal
leakage from X to Y is defined as

L(X→Y ) = sup
U−X−Y−Û

log
Pr
(
U = Û

)
maxu∈U PU (u)

,

where U and Û take values in the same finite alphabet.
We can rewrite L(X→Y ) as

L(X→Y ) = sup
U−X−Y

log

∑
y∈Y maxu∈U PUY (u, y)

maxu∈U PU (u)
.

(1)
Our main theorem is the characterization of maximal

leakage as follows.
Theorem 1: For any joint distribution PXY on finite

alphabets X and Y , the maximal leakage from X to Y
is given by

L(X→Y ) = log
∑
y∈Y

max
x∈X :

PX(x)>0

PY |X(y|x).

Proof: Assume, without loss of generality, that
PX(x) > 0 for all x ∈ X . Note that the right-
hand side is equal to I∞(X;Y ) [19,20]. To show that
L(X → Y ) ≤ I∞(X;Y ), consider any U satisfying
U −X − Y . Let

L(X→Y )[U ] = log

∑
y∈Y maxu∈U PUY (u, y)

maxu∈U PU (u)
, (2)

so that L(X→Y ) = supU :U−X−Y L(X→Y )[U ]. Then,∑
y∈Y

max
u∈U

PUY (u, y)

=
∑
y∈Y

max
u∈U

∑
x∈X

PX(x)PU |X(u|x)PY |X(y|x)

≤
∑
y∈Y

max
u∈U

∑
x∈X

PX(x)PU |X(u|x) max
x′∈X

PY |X(y|x′)

=
∑
y∈Y

(
max
x′∈X

PY |X(y|x′)
)
max
u∈U

∑
x∈X

PX(x)PU |X(u|x)

=
∑
y∈Y

max
x∈X

PY |X(y|x)max
u∈U

PU (u).

Therefore, L(X→ Y )[U ] ≤ I∞(X;Y ) for all PU |X ,
hence L(X→Y ) ≤ I∞(X;Y ).

For the reverse inequality, we construct a PU |X for
which L(X→Y )[U ] = I∞(X;Y ). To that end, let p? =
minx∈X PX(x). For each x ∈ X , let k(x) = PX(x)/p?,
and let U =

⋃
x∈X {(x, 1), (x, 2), . . . , (x, dk(x)e)}. For

each u = (iu, ju) ∈ U and x ∈ X , let PU |X(u|x) be:

PU |X((iu, ju)|x)

=


p?

PX(x) , iu = x, 1 ≤ ju ≤ bk(x)c,
1− (dk(x)e−1)p?

PX(x) , iu = x, ju = dk(x)e,
0, iu 6= x, 1 ≤ ju ≤ dk(iu)e.

Remark 1: It is easy to check that if bk(x)c = dk(x)e,
then the corresponding formulas are equal.

Then, for each ((iu, ju), x) ∈ U × X ,

PUX((iu, ju), x)

=


p?, iu = x, 1 ≤ ju ≤ bk(x)c,
PX(x)−(dk(x)e− 1)p?, iu = x, ju = dk(x)e,
0, iu 6= x, 1 ≤ ju ≤ dk(iu)e.

As mentioned in the introduction, the supports of
PU |X=x are disjoint for distinct x’s, and each x is
effectively shattered into shards of probability p?. Now,
note that

max
u∈U

PU (u) = max
(iu,ju)∈U

PUX((iu, ju), iu) = p?. (3)

Now, consider any (u, y) ∈ U × Y . We have

PUY ((iu, ju), y)

=
∑
x∈X

PX(x)PU |X((iu, ju)|x)PY |X(y|x)

= PX(iu)PU |X((iu, ju)|iu)PY |X(y|iu)

=

{
p?PY |X(y|iu), 1 ≤ ju ≤ bk(iu)c,
(PX(x)−(dk(x)e− 1)p?)PY |X(y|iu), ju = dk(iu)e.

Then, for a given y ∈ Y ,

max
(iu,ju)∈U

PUY ((iu, ju), y) = max
(iu,1)∈U

p?PY |X(y|iu)

= max
x∈X

p?PY |X(y|x). (4)

Finally, we get

L(X→Y ) ≥ L(X→Y )[U ] = log
∑
y∈Y

max
x∈X

PY |X(y|x),

where the inequality follows from the definition, and the
equality follows from equations (2), (3), and (4).

The above result and analysis sheds light on the
reason behind the equivalence between L(X → Y )
and ML(PY |X). First, L(X → Y ) depends on PX
only through its support. Moreover, on the one hand,
the maximizer for ML(PY |X) is always the uniform
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distribution [22]; and on the other hand, for a uniform
PX , the above optimizing PU |X is simply the identity
map, which is the function of interest in [21,22].

In light of this, one might wonder if there is always a
deterministic map PU |X that achieves L(X→Y ). This is,
however, not true in general. Suppose PXY satisfies the
following condition: there exists x? ∈ X such that for all
y ∈ Y , PX|Y (x?|y) ≥ 1/2. Then, for any deterministic
function f , L(X→Y )[f(X)] (cf. (2)) is zero since f(x?)
is always the optimal choice for the adversary, with
and without the observation of Y . The above condition,
however, is not sufficient for X and Y to be independent.
The equivalence between L(X → Y ) and I∞(X;Y )
implies, on the other hand, that the independence of
X and Y is necessary for maximal leakage to be zero,
(see Corollary 2). Due to its usefulness, we state this
equivalence as a separate corollary.

Corollary 1: For any joint distribution PXY on finite
alphabets X and Y ,

L(X→Y ) = I∞(X;Y ),

where I∞(X;Y ) is the Sibson mutual information of
order infinity.

Sibson’s Iα(X;Y ) (α ≥ 0) is an extension of the
concept of Renyi entropy Hα(X) and Renyi divergence
Dα(P ||Q). Although there are other possible extensions,
[19] argues for the adoptions of Sibson’s definition. Our
result could be seen as also supporting that claim (more
recently, I∞(X;Y ) has been used as a complexity mea-
sure in the study of communication complexity [41]).

For binary-valued X , say X = {0, 1}, Sibson [20]
showed that

I∞(X;Y ) = log

(
1 +

1

2
‖PY |X(·|1)− PY |X(·|0)‖

)
,

where ‖.‖1 is the L-1 distance. The term inside the log
is twice the probability of success in binary hypothesis
testing, which sheds light on why I∞(X;Y ) arises as
maximal leakage. We evaluate L(X → Y ) for some
special cases.

Example 1: If X ∼ Ber(q), 0 < q < 1, and Y is the
output of a BSC with parameter p, 0 ≤ p ≤ 1/2, then
L(X→Y ) = log(2(1− p)).

Example 2: If X ∼ Ber(q), 0 < q < 1, and Y is
the output of a BEC with parameter ε, 0 ≤ ε ≤ 1, then
L(X→Y ) = log(2− ε), and L(Y→X) = log 2.

Example 3: For any deterministic law PY |X ,
L(X→Y ) = log |{y : PY (y) > 0}|.

The following corollary summarizes some useful
properties of L(X→Y ).

Corollary 2: For any joint distribution PXY on finite
alphabets X and Y ,

1) (Data Processing Inequality) If the Markov chain
X − Y − Z holds for a discrete random variable
Z, then L(X→Z) ≤ min{L(X→Y ),L(Y→Z)}.

2) L(X→X) = H0(X) = log |{x : PX(x) > 0}|.
3) L(X→Y ) ≤ min{log |X |, log |Y|}.
4) L(X→Y ) ≥ I(X;Y ).
5) L(X→Y ) = 0 iff X and Y are independent.
6) L(X→Y ) is not symmetric in X and Y .
7) (Additivity) If {(Xi, Yi)}`i=1 are mutually indepen-

dent, then

L(X`
1→Y `1 ) =

∑̀
i=1

L(Xi→Yi).

8) exp{L(X→Y )} is convex in PY |X for fixed PX .
Proof: Properties 1) through 4), and 7) are shown

for I∞(X;Y ) [19]. 5) follows from the definition and
4). 6) is clear and is illustrated in Example 2. 8) follows
from the fact that, for each y ∈ Y , maxx PY |X(y|x) is
convex in PY |X .

Note that properties 1), 5), and 7) can be regarded as
axiomatic for a leakage measure. Property 4) shows that
a small maximal leakage is a more stringent requirement
than a small mutual information. Property 8) shows that
minimizing maximal leakage, for a fixed PX , amounts
to minimizing a convex function.

IV. MAXIMAL LEAKAGE VARIATIONS

We show the robustness of maximal leakage, by
proving that variations on its definition yield the same
quantity.

A. k-maximal leakage

We allow the adversary several guesses, as arises in
some practical situations discussed in the introduction.

Definition 2 (k-Maximal Leakage): Given a joint dis-
tribution PXY on finite alphabets X and Y , and a
positive integer k, the k-maximal leakage from X to
Y is defined as

L(k)(X→Y ) = sup
U−X−Y−(Ûi)ki=1

log
Pr
(∨k

i=1 U = Ûi

)
max S⊆U

|S|≤k
PU (S)

.

The following lemma establishes the equivalence be-
tween maximal leakage and k-maximal leakage.

Lemma 1: For any joint distribution PXY on finite
alphabets X and Y , and any k ∈ N,

L(k)(X→Y ) = L(X→Y ).

Proof:
To show L(k)(X → Y ) ≥ L(X → Y ), for any

PU |X , we construct PV |X such that L(k)(X→Y )[V ] =
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L(X→Y )[U ]. In particular, for a given PU |X and asso-
ciated alphabet U , let

V =
⋃
u∈U
{(u, 1), (u, 2), . . . , (u, k)},

and PV |X(v|x) = PV |X((av, bv)|x) = PU |X(av|x)/k.

Then, observing Y , the probability of guessing V cor-
rectly with k guesses is:

sup
X−Y−(V̂i)ki=1

Pr(V = V̂1 ∨ · · · ∨ V = V̂k)

=
∑
y∈Y

max
v1,v2,...,vk
vi 6=vj ,i6=j

k∑
i=1

∑
x∈X

PX(x)PV |X(vi|x)PY |X(y|x)

=
∑
y∈Y

k∑
i=1

max
vi 6=v1,...,vi−1

∑
x∈X

PX(x)PV |X(vi|x)PY |X(y|x)

(a)
=
∑
y∈Y

max
u

∑
x∈X

PX(x)PU |X(u|x)PY |X(y|x), (5)

where (a) follows by setting vi = (u?, i), where

u? = argmax
u∈U

∑
x∈X

PX(x)PU |X(u|x)PY |X(y|x).

Now, note that (5) is simply the probability of guessing
U correctly with a single guess after observing Y . A
similar argument shows that, with no Y observation, the
probability of guessing V correctly with k guesses is
equal to the probability of guessing U correctly with a
single guess, hence L(k)(X→Y )[V ] = L(X→Y )[U ],
which establishes L(k)(X→Y ) ≥ L(X→Y ).

We still need to show L(X→Y ) ≥ L(k)(X→Y ). For
any PV |X , we construct PU |X such that L(X→Y )[U ] =
L(k)(X→Y )[V ]. So let PV |X be given, with associated
alphabet V , and let ` , |V| ≥ k. Now, let

U = {S ⊂ V : |S| = k},

and pU |X(u|x) = c
∑
v∈u

pV |X(v|x),

where c = 1/
(
`−1
k−1
)
. Then, observing Y , the probability

of guessing U correctly with a single guess is

sup
X−Y−Û

Pr(U = Û)

=
∑
y∈Y

max
u∈U

∑
x∈X

PX(x)PU |X(u|x)PY |X(y|x)

=
∑
y∈Y

max
u∈U

∑
x∈X

PX(x)
∑
v∈u

PV |X(v|x)PY |X(y|x)c

= c
∑
y∈Y

max
v1,v2,...,vk
vi 6=vj ,i6=j

∑
x∈X

k∑
i=1

PX(x)PV |X(vi|x)PY |X(y|x),

which is the probability, normalized by c, of guessing V
correctly with k guesses after observing Y . A similar ar-
gument shows that, with no Y observation, the probabil-
ity of guessing U correctly with a single guess is equal to
the probability, normalized by c, of guessing V correctly
with k guesses, hence L(X→Y )[V ] = L(k)(X→Y )[U ],
which establishes L(X→Y ) ≥ L(k)(X→Y ).

B. Maximal locational leakage

For locational leakage, the adversary only needs to
generate a guess that is within a certain distance of the
true function value. The term “locational” is motivated
by the scenario in which the variable of interest U is a
geographical location.

Definition 3 (Maximal Locational Leakage): Given a
joint distribution PXY on finite alphabets X and Y , and
a metric space U (with its associated Borel σ-field), the
maximal locational leakage from X to Y is defined as

LU (X→Y )= sup
U :U−X−Y

∃u:Pr(U∈B(u))>0

log
supû(.) Pr(U ∈ B(û(Y )))

supûPr(U ∈ B(û))
,

(6)
where B(u) denotes the closed unit ball centered at u ∈
U .

Lemma 2: For any joint distribution PXY on finite
alphabets X and Y , and any metric space U ,

LU (X→Y ) ≤ L(X→Y ),

with equality if U has an infinitely countable subset S,
such that no pair of its elements can be contained in a
single unit ball.

Proof:
Consider any U and û(Y ) in the maximization of (6):

Pr(U ∈ B(û(Y ))

≤
∑
y∈Y

sup
u∈U

P (U ∈ B(u), Y = y)

=
∑
y∈Y

sup
u∈U

∑
x∈X

P (U ∈ B(u), X = x, Y = y)

=
∑
y∈Y

sup
u∈U

∑
x∈X

P (U ∈ B(u))·

P (X = x|U ∈ B(u))PY |X(y|x)

≤
∑
y∈Y

sup
u∈U

P (U ∈ B(u)) sup
x∈X

pY |X(y|x)

=

∑
y∈Y

sup
x∈X

pY |X(y|x)

 sup
u∈U

P (U ∈ B(u)).

Therefore,

LU (X→Y ) ≤ log
∑
y∈Y

sup
x∈X

PY |X(y|x) = L(X→Y ).
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If U satisfies the lemma condition (e.g., U is unbounded),
then exact guessing of discrete functions can be sim-
ulated by choosing S to be the support of U . Hence
LU (X→Y ) ≥ L(X→Y ), which implies the equality.
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